Nulmq Uhlmqghuv - 10.30 - Pdb 12, 2025

# LVRJHQLHV & LVRPHWULHV

# LVRJHQLHV & LVRPHWULHV

# LVRJHQLHV & LVRPHWULHV

# KVRJHQLHV & LVRPHWULHV

# JVRJHQLHV & LVRPHWULHV

# **IVRJHQLHV & LVRPHWULHV**

# TVRJHQLHV

# LVRPHWULHV S

# TUQIGPKGU

KUQOGVTKGU 6

# TPHFOJFT

# JTPNFUSJFT 8

# **ISOMETRIES** 8

# **ISOGENIES & ISOMETRIES**

Krijn Reijnders - 10.30 - May 12, 2025

# **ISOGENIES & ISOMETRIES**

# **Our First Encryption!**

Encrypt: +3

# Message

"What the teacher is, is more important than what he teaches."

Karl Menninger.



# **Encrypted Text**

"Zkdw wkh whdfkhu Iv, Iv pruh Ipsruwdqw wkdq zkdw kh whdfkhv."

Nduo Phqqlqjhu.

# **MESSAGE:** Innovation [...] has come primarily from the amateurs



(Diffie and Hellman, 1976)

# **MESSAGE:** Innovation [...] has come primarily from the amateurs

(repeats)

(Diffie and Hellman, 1976)

# **KEYWORD: crypto**cryp [...] toc rypt ocryptocr ypto cry ptocrypt

09

# (repeats)

03

12

L

(Diffie and Hellman, 1976)

**MESSAGE:** Innovation [...] has come primarily from the amateurs

**KEYWORD: crypto**cryp [...] toc rypt ocryptocr ypto cry ptocrypt

# **MESSAGE:** Innovation [...] has come primarily from the amateurs

 09 14 14 15 22 01 20 09 15 14
 [...]
 08 01 19
 03 15 13 05
 16 18 09 13 01 18 09 12 25
 06 18 15 13
 20 08 05
 01 13 01 20 05 21 18 19

# **KEYWORD: crypto**cryp [...] toc rypt ocryptocr ypto cry ptocrypt (repeats)

 03 18 25 16 20 15 03 18 25 16
 [...]
 20 15 03
 18 25 16 20
 15 03 18 25 16 20 15 03 18
 25 16 20 15
 03 18 25
 16 20 15 03 18 25 16 20

 12 06 13 05 16 16 23 01 14 04
 [...]
 02 06 22
 21 14 03 25
 05 21 01 12 17 12 24 15 17
 05 08 09 02
 23 26 04
 17 07 16 23 23 20 08 13

**ENCRYPTION:** Lfmeppwand [...] bj

(Diffie and Hellman, 1976)

# Lfmeppwand [...] bpv uncy eualqlxoq ehib wzd qgpwwthm



Innovation, particularly in the design of new types of cryptographic systems, has come primarily from the amateurs.

Diffie and Hellman, 1976.



# Vigenère Encryption!



# **Encrypted Text**

Lfmeppwand, jpulhsoadjko cc wzd tyhlym ez cho sojtv ge slnslnwlpszhs mnvldcm, wdk begt sjhcugldx vldp lgu ubdldklh.

Gaevet dfc Xyaoezd, 1976.

# Message

Innovation, particularly in the design of new types of cryptographic systems, has come primarily from the amateurs.

Diffie and Hellman, 1976.



# SAME-KEY Innovation, par cc wzd tyhlym new types of c CRYPTOGRAPHY zhs mnvldcm, has come prima lgu ubdldklh. Diffie and **d**, 1976. (symmetric cryptography)

# Same key!

Encrypt with keyword

**Decrypt with keyword** 



# Same key!

Encrypt with keyword

## cc wzd tyhlym CRYPTOGRAPHY zhs mnvldcm, lgu ubdldklh. **d**, 1976. (symmetric cryptography)

**Decrypt with keyword** 

# Message

Innovation, particularly in the design of new types of cryptographic systems, has come primarily from the amateurs.

Diffie and Hellman, 1976.



# **Encrypted Text**

Lfmeppwand, jpulhsoadjko cc wzd tyhlym ez cho sojtv ge slnslnwlpszhs mnvldcm, wdk begt sjhcugldx vldp lgu ubdldklh.

Gaevet dfc Xyaoezd, 1976.

## LOCK-AND-KEY cc wzd tyhlym Innovation, par CRYPTOGRAPHY new types of in zhs mnvldcm, has come prime lgu ubdldklh. (asymmetric cryptography, Diffie and **d**, 1976.



public key cryptography)

**Decrypt with my own** secret key





**Decrypt with my own** secret key



# LOCK-AND-KEY cc wzd tyhlym zhs mnvldcm, lgu ubdldklh.

(asymmetric cryptography, public key cryptography)

**d**, 1976.







# SAME-KEY CRYPTOGRAPHY (symmetric cryptography)

# LOCK-AND-KEY CRYPTOGRAPHY

(asymmetric cryptography, public key cryptography)



# SAME-KEY CRYPTOGRAPHY (symmetric cryptography)

# LOCK-AND-KEY CRYPTOGRAPHY

(asymmetric cryptography, public key cryptography)



# SAME-KEY CRYPTOGRAPHY (symmetric cryptography)

# POST-QUANTUM CRYPTOGRAPHY

# **ISOGENIES & ISOMETRIES**

Krijn Reijnders - 10.30 - May 12, 2025





















# analysis

Understanding these maps





# design

Build cryptography from these maps



# analysis

Understanding these maps

- if we know the objects A and B, how **hard** is it to find the map  $\varphi$ ?
- if we have a **quantum computer**, is it easier to find the map  $\varphi$  ?
- when we compute  $\varphi$  in practice, do we **leak information** on  $\varphi$  ?





## design

Build cryptography from these maps



## analysis

Understanding these maps

- if we know the objects A and B, how **hard** is it to find the map  $\varphi$  ?
- if we have a **quantum computer**, is it easier to find the map  $\varphi$  ?
- when we compute  $\varphi$  in practice, do we **leak information** on  $\varphi$  ?



φ

## design

Build cryptography from these maps

- how **versatile** is cryptography using these type of maps  $\varphi$  ?
- how **efficient** is cryptography using these type of maps  $\varphi$  ?
- can we use **smarter maths** to compute  $\varphi$  more efficiently?



# ISOMETRIES



# Chapter 4

if you **listen carefully** to your chip, you can learn secret isogenies

design

analysis

# ISOMETRIES

# Chapter 4

if you **listen carefully** to your chip, you can learn secret isogenies

# Chapter

if you **shoot la** at your chip, yo learn secret iso

design

analysis

| ISOM | ETR | IES |
|------|-----|-----|
|------|-----|-----|

| er 5<br>lasers<br>rou can<br>ogenies |  |  |
|--------------------------------------|--|--|
|                                      |  |  |
|                                      |  |  |

# Chapter 4

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot l**a at your chip, yo learn secret iso

# Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

|                             | ISOMETRIES |
|-----------------------------|------------|
| 5<br>sers<br>I can<br>enies |            |
|                             |            |

# Chapter 4

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

## Chapte

if you **shoot la** at your chip, yo learn secret iso

## Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

# Chapter

if you make eve super safe for ise it all becomes ve

|                                          | ISOMETRIES |
|------------------------------------------|------------|
|                                          |            |
| <b>r 5</b><br>asers<br>ou can<br>ogenies |            |
| erything<br>sogenies,<br>ery slow        |            |

Т

# **Chapter 4**

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot la** at your chip, yo learn secret iso

## Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

# Chapter 9 & 10

we can make certain isogenies **much faster**, if we make others slow

# Chapte

if you make eve super safe for is it all becomes v

| ISOM | ETR | IES |
|------|-----|-----|
|------|-----|-----|

# **Chapter 4**

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot la** at your chip, yo learn secret iso

# Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

# Cnapte

if you make eve super safe for is it all becomes v

# **Chapter 9 & 10**

we can make certain isogenies **much faster**, if we make others slow

# Chapter

using more comple makes some iso **very cool** but

| ISOM | ETR | IES |
|------|-----|-----|
|------|-----|-----|

| erything<br>sogenies,<br>rery slow       |  |  |
|------------------------------------------|--|--|
| <b>11</b><br>ex maths<br>ogenies<br>slow |  |  |

# **Chapter 4**

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot la** at your chip, yo learn secret iso

# Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

super safe for is it all becomes v

# hapter 9 & 10

we can make certain isogenies **much faster**, if we make others slow

# Chapter

using more comple makes some iso very cool but

|                                    | ISOMETRIES                                                                                                  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <b>5</b><br>sers<br>a can<br>enies | <b>Chapter 12</b><br>our <b>new algorithm</b> finds<br>secret isometries faster,<br>but its still very hard |
| 7<br>ything<br>ogenies,<br>ry slow |                                                                                                             |

# **Chapter 4**

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot la** at your chip, yo learn secret iso

# Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

if you make everything **super safe** for isogenies, it all becomes very slow

# hapter 9 & 10

we can make certain isogenies **much faster**, if we make others slow

# Chapter

using more complex maths makes some isogenies **very cool** but slow

# ISOMETRIES

ur **new algorithm** finds

but its still very hard

r 7

11

# Chapter 13

we make **digital signatures** from isometries, but... they're slow and big

# **Chapter 4**

if you **listen carefully** to your chip, you can learn secret isogenies

analysis

design

# Chapte

if you **shoot lasers** at your chip, you can learn secret isogenies

# Chapter 6 & 8

using **smarter maths** makes certain isogenies faster and safer

if you make everything **super safe** for isogenies, it all becomes very slow

# hapter 9 & 10

we can make certain isogenies **much faster**, if we make others slow

# Chapter

using more complex maths makes some isogenies **very cool** but slow

# ISOMETRIES

# Chapter 12

our **new algorithm** finds secret isometries faster, but its still very hard

r 7

11

# Chapter 13

we make **digital signatures** from isometries, but... they're slow and big

# Chapter 14

you can use maths to make these signatures smaller and faster



# **ISOMETRIES**

| · 5  |  |
|------|--|
| sers |  |

# Chapter 12

our **new algorithm** finds secret isometries faster, but its still very hard

# Chapter 13

we make **digital signatures** from isometries, but... they're slow and big

# Chapter 14

you can use maths to make these signatures smaller and faster







Certain cryptography made from isogenies (CSIDH) is now faster and more secure, but not yet ready for the real world.



1





Certain cryptography made from isogenies (CSIDH) is now faster and more secure, but not yet ready for the real world.

2

Other cryptography made from isogenies (SQIsign) is now faster and more secure, and looks **pretty promising** for the future!

1

 $50 \longrightarrow GEN$ 





Certain cryptography made from isogenies (CSIDH) is now faster and more secure, but not yet ready for the real world.

2

Other cryptography made from isogenies (SQIsign) is now faster and more secure, and looks **pretty promising** for the future!

 $50 \longrightarrow GHN$ 



3

Our cryptography made from isometries (MCE) is a nice try, but has **major issues**... We should be more bold with isometries!



