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Abstract

In this short paper, we combine two new techniques in pairings to
do subgroup membership testing for the Gaudry–Schost Kummer sur-
face: showing that a point P is in the subgroup G of large prime order.
First, we generalize Koshelev’s method for subgroup membership test-
ing using Tate pairings to higher dimensions. Second, using Robert’s
cubical arithmetic, we optimize degree-2 Tate pairings on Kummer sur-
faces. We verify P ∈ G using only 6 additions, 10 multiplications, and
4 Legendre symbols.

1 Introduction

Subgroup membership testing, in the context of elliptic-curve cryptography,
asks if a point P ∈ E(Fq) is a member of a particular subgroup G ⊂ E(Fq).
Usually, G is a subgroup of large prime order r of E(Fq), and we assume the
hardness of the discrete logarithm in G to build cryptographic primitives.

Optimizing subgroup membership testing is a non-trivial task, but essen-
tial to prevent certain subgroup attacks [LL97]. For example, a major bug in
the Monero cryptocurrency allows for double-spending of coins, and requires
a subgroup membership test to prevent this [lS17]. Similarly, pairing-based
protocols require subgroup membership testing to ensure that we are work-
ing with points in the correct subgroups [BCM+15; Bow19; Sco21].

A recent innovation by Koshelev [Kos22] performs subgroup membership
testing using the non-degeneracy of the Tate pairing. For certain curves,
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this may outperform previous methods for subgroup membership testing, in
particular when the Tate pairing computation is fast, and the parameters of
the elliptic curve are suitable.

Contributions.

In this work, we study the abstract problem of solving subgroup membership
testing on Kummer surfaces as efficiently as possible, focusing specifically
on the Kummer surface described by Gaudry and Schost [GS12]. For this
surface K, we want to verify that points P ∈ K(Fp) are in a specific subgroup
G = K(Fp)[r], where r is a large (125-bit) prime. This brings along some
challenges: we need to adapt Koshelev’s method [Kos22] to higher dimen-
sions, and optimize the computation of Tate pairings of degree 2 on Kummer
surfaces. Our results are incremental; we rephrase Koshelev’s method in di-
mension 2, rather than dimension 1, and significantly optimize the cubical
arithmetic on Kummer surfaces for pairings of degree 2.

Our main result is summarized by Theorem 1, which shows that we can
easily compute subgroup membership P ∈ G using a few operations in Fp

and four Legendre symbols, which dominate the cost.

Theorem 1. Let P = (P1, P2, P3, P4) ∈ K(Fp), originating from J (Fp).

Let G = K[r]. Let m1 := P1 ·
(∑4

j=1M1,jPi

)
, m2 := P3 ·

(∑4
j=1M2,jPi

)
,

m3 := P1 · P4, and m4 := P1 · P3 given precomputed constants Mi,j ∈ Fp.
Denote by ζi the Legendre symbol of mi. Then

P ∈ G ⇔ (ζ1, ζ2, ζ3, ζ4) = (1, 1, 1, 1).

Theorem 1 is a combination of two lemmas: Lemma 2, which applies Koshelev’s
subgroup membership testing [Kos22; DHK+24] in higher-dimensions, and
Lemma 3 which shows that the values ζi actually compute the reduced Tate
pairing of degree 2, following Robert’s cubical arithmetic [Rob24].

Lemma 2. Let P ∈ K(Fp), originating from J (Fp). Then P ∈ G if and
only if all 2-Tate pairings are trivial, i.e., t2(L,P ) = 1 for all L ∈ J [2].

Lemma 3. Let P ∈ K(Fp). If ζi = 1 for 1 ≤ i ≤ 4, then all 2-Tate pairings
are trivial, i.e., t2(L,P ) = 1 for all L ∈ J [2].

We prove Lemma 2 in Section 3 using the language of Tate profiles [CR24],
and then optimize the computation of such profiles in Sections 4 and 5, both
for general Kummer surfaces and specifically the Gaudry–Schost Kummer
surface. We discuss possible generalizations in Section 6.
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Altogether, the subgroup membership test takes only 6 additions, 10
multiplications, and 4 Legendre symbols. The non-reduced cubical pairings,
when optimized for this specific surface, are more than 10 times faster to
compute the 2-Tate profile of a point, compared to previous (generic) ap-
proaches to compute 2-Tate profiles on Kummer surfaces [CR24]. Our ap-
proach to subgroup membership testing is more than fourteen times faster
than the näıve approach of computing [r]P via a Montgomery ladder.

2 Preliminaries

Notation. We work mostly over Fp. An extension is denoted Fq for q =
pm. When working with Jacobians J /Fp, we describe the 2-torsion byDi,j ∈
J [2], which refers to element of J associated to the divisor (wi, 0)+ (wj , 0),
where wi, wj are Weierstrass points of the hyperelliptic curve. We assume
this curve is in Rosenhain form, and so w1 = ∞, w2 = 0, w3 = 1, w4 = λ,
w5 = µ, and w6 = ν. More details can be found in, for example, [CR24, §2].

On their Kummer surfaces, we denote by Li,j ∈ K[2] the point associated
to Di,j ∈ J [2]. The map Q 7→ Q + Li,j is well-defined for 2-torsion points
Li,j , and can be given as a (4× 4)-matrix, which we denote Wi,j .

On Kummer surfaces, we denote a point Q ∈ K as (Q1 : Q2 : Q3 : Q4) ∈
P3(Fp), which is defined up to scalars. An affine lift for Q is denoted Q̃,
and in this work specifically refers to any choice (Q1, Q2, Q3, Q4) ∈ F4

p that

represents Q. We may normalize such a lift Q̃ in index k by Qi 7→ Qi/Qk,
as long as Qk ̸= 0.

Operations in Fp are denoted by M for multiplication, S for squaring,
A for addition, and L for the Legendre symbol. Whenever we refer to Fp-
operations, we use the model S = 0.8M and A = 0.05M. We estimate 1L
at 125S+ 9M using an addition chain [McL21].

2.1 Kummer Surfaces

Only a few years after the birth of elliptic-curve cryptography [Mil85; Kob87],
Koblitz [Kob89] showed that one may just as well use curves of larger genus.
In particular, genus-2 hyperelliptic curves, and their Jacobians, seem well-
suited for cryptography based on the discrete-logarithm problem. Gaudry
[Gau07] shows that in such cases, one may work on the Kummer surface1 K
associated to the Jacobian J , which boasts much faster arithmetic and still

1We choose to use the language of Kummer surfaces, although our work can be inter-
preted in the language of theta structures of level 2 for abelian surfaces as well.
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allows us to compute P 7→ [n]P . This is similar to the situation for ellip-
tic curves, where the Kummer line of an elliptic curve gives us fast x-only
arithmetic. A good introduction to arithmetic in genus 2 can be found in
Cassels and Flynn [CF96].

In genus 2, however, it is much harder to find secure curves, compared to
genus 1. We want to find a curve such that the Jacobian has a large enough
prime-order subgroup, and such that its twist has a similarly large prime-
order subgroup. Furthermore, several other technical details are important
to achieve fast arithmetic on their related Kummer surfaces. Through a large
computational search, Gaudry and Schost [GS12] found a nearly perfect
Jacobian over the prime p = 2127 − 1. We briefly describe the Jacobian,
and its associated Kummer surface, as given in [BCHL16, §5.5.1]. A more
detailed description of Kummer surfaces is given in [CR24, §2].

The Gaudry–Schost’s Kummer Surface. The fundamental constants
(a2, b2, c2, d2) = (11,−22,−19,−3) ∈ F4

p, where p = 2127 − 1, give us a
Kummer surface K/Fp which we call the Gaudry–Schost Kummer surface.
It is the Kummer surface associated to the Jacobian J /Fp defined by the
Rosenhain invariants

λ = 28356863910078205288614550619314017618,

µ = 154040945529144206406682019582013187910,

ν = 113206060534360680770189432771018826227.

The Jacobian J has 24 ·r rational points, and its twist J T has 24 ·r′ rational
points, where r and r′ are the primes

r = 1809251394333065553414675955050290598923508843635941313077767297801179626051,

r′ = 1809251394333065553571917326471206521441306174399683558571672623546356726339.

The zero point is 0K = (a2, b2, c2, d2). To do arithmetic on the Kummer
surface, we use the usual building blocks: the Hadamard transform, the
4-way squaring, and the 4-way multiply.

Remark 4. A similar Kummer surface over p = 2128 − 34827 is given in
[BCHL16, §5.5.2]. As the group structure is similar, the techniques in this
work apply directly to this Kummer surface too.

The origin of points on the Kummer surface. Points P ∈ K(Fp)
are either associated to a point P̄ ∈ J (Fp) on the Jacobian, or to a point
P̄ ′ ∈ JT (Fp) on its twist. In the former case, we say that a point P ∈ K(Fp)
originates from the Jacobian, whereas in the latter case, P originates from
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the twist. An algorithm to compute the origin of a point is given in [CR24,
§4.1]. For the Gaudry–Schost Kummer surface, checking the origin of a
point using this algorithm takes 22M+ 1S+ 13A+ 1L.

2.2 The Tate Pairing

The Tate-Lichtenbaum pairing [Tat62; Lic69] on a Jacobian J /k, often re-
ferred to as simply the Tate pairing, is a bilinear map

Tn : J(k)[n]× J(k)/[n]J(k)→ k∗/k∗,n,

which is bilinear and Galois invariant. We will assume k = Fq, where q = pm

is a power of a prime p. Whenever µn ⊆ k∗, the Tate pairing is non-
degenerate. The reduced Tate pairing tn is the Tate pairing Tn composed
with the exponentiation by (q − 1)/n, which maps k∗/k∗,n → µn.

The Tate pairing was introduced in a cryptographic context by Frey
and Rück [FR94]. Miller’s algorithm [Mil04] enables efficient computation
on the Jacobian. Methods to compute the Tate pairing are developed in
[Sta07; LR10; LR15; LR16; Rob24]. Computing pairings on the Kummer
variety of an abelian variety is more difficult. We discuss this for Kummer
surfaces in Section 4, more generally see [Rob24].

3 Koshelev’s subgroup membership test

Koshelev’s method for subgroup membership testing [Kos22; DHK+24] is
based on the observation that the subgroup membership problem can, in
some cases, be rephrased using the non-degeneracy of the Tate pairing. This
is significantly different from other approaches [Sco21].

Theorem 5 ([Kos22, Lem. 1]). Let E/Fp be an elliptic curve with E(Fp) ∼=
Ze1 × Ze2 × Zr, with e1 | e2 and both coprime with r, and let G denote the
subgroup of E(Fp) of order r. Let P1 and P2 generate E[e2](Fp), of order
e1, resp. e2. Assume e2 | p− 1, so that the Tate pairing is non-degenerate.
Then,

Q ∈ G ⇔ te1(P1, Q) = 1 and te2(P2, Q) = 1.

We rephrase this latter test in the language of Tate profiles [CR24], i.e.,
the array of values of the Tate pairings with respect to (a basis of) the
n-torsion E[n].
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Definition 6. The Tate profile of degree n of a point Q ∈ E(Fq) with
respect to a basis B = (B1, B2) of E[n] is the image of the map

t[n] : E(Fq)→ µ2
n

Q 7→ (tn(B1, Q), tn(B2, Q)) ,

where tn is the Tate pairing of degree n. If t[n](Q) = (1, 1), we say that the
profile is trivial.

Using profiles, we rephrase Koshelev’s subgroup membership test as fol-
lows: Q ∈ G if and only if Q has trivial profile t[e2](Q). For more details on
profiles and their applications, we refer the reader to [Rei25].

Subgroup Membership Testing for the Gaudry–Schost’s surface.
The above approach generalizes easily to higher-dimensions. In particular,
for the Gaudry–Schost surface, We know that the order of the associated
Jacobian J (Fp) is 16 · r, and of its twist J T (Fp) is 16 · r′. By construction,
J has rational 2-torsion, which is the perfect set-up for Koshelev’s approach
to subgroup membership testing using Tate pairings:

Observation 7. Let G be the subgroup of order r of J (Fp), and similarly,
let G′ be the subgroup of order r′ of J T (Fp). We have that

J(Fp) = J [2]×G, J T (Fp) = J T [2]×G′.

From this, we easily find the subgroup membership test, by proving
Lemma 3, repeated here for convenience:

Lemma. For Q ∈ J (Fp), we have

Q ∈ G ⇔ t[2](Q) is trivial.

Proof. By non-degeneracy of the 2-Tate pairing, we have that a trivial pro-
file t[2](Q) implies Q ∈ [2]J (Fp), and, from Observation 7 we know that
[2]J (Fp) = G.

For the remainder of this work, we assume a pointQ ∈ K(Fp), originating
from J (Fp), and try to compute its profile to determine that Q originates
from G. We will abuse notation and write Q ∈ G, when we mean that Q
is a point on the Kummer surface K associated to a point in the subgroup
G = J [r](Fp).
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4 Pairings on Kummer Surfaces

In this section we describe the computation of level-2 pairings on Kummer
surfaces. We discuss two methods in details: first, using a partial map back
to the Jacobian [CR24], and second, the more natural approach using cubical
arithmetic [Rob24].

4.1 Pairings Using a Partial Map to the Jacobian

Intuitively, computing pairings on Jacobians is simpler to understand than
on Kummer surfaces, as we can perform Miller’s algorithm [Mil04] on the
Jacobian. Hence, if we can find an associated P ∈ J (Fp) such that Q = ρ(P )
for the covering ρ : J (Fp) → K(Fp), we can compute the required pairings
on J (Fp) using P . In particular, for the Tate pairing of degree 2, given
Di,j ∈ J [2] and P ∈ J (Fp) in Mumford representation

Di,j = ⟨(x− wi)(x− wj), 0⟩, P = ⟨a(x), b(x)⟩,

with a(x) ∈ Fp[x], we can compute the (non-reduced) Tate pairing as the
resultant of (x − wi)(x − wj) and a(x). Hence, given Q ∈ K(Fp), we only
need to recover a(x) from Q to compute the pairings.

Such a map K(Fp) → Fp[x], with Q 7→ a(x) is given in [CR24, §2.7], as
a partial inverse to the covering J (Fp)→ K(Fp). Given a(x), we may then
compute the four Tate pairings with respect to a basis of J [2] to compute
the 2-profile t[2](Q).

Altogether, this approach costs 76M+ 33S+ 53A+ 4L for the compu-
tation of the 2-profile t[2](Q) of a point Q on the Kummer surface K(Fp).

4.2 Cubical Pairings of Degree 2

In [Rob24], Robert introduces cubical arithmetic to compute pairings, spe-
cializing to Kummer varieties in §4.7. With this, we compute Tate pairings
on Kummer surfaces naturally, without moving to the Jacobian.

The Tate pairing of degree n = 2 is special, as it requires almost none
of the machinery of cubical arithmetic, beyond translations: Given a point
Li,j ∈ K[2], and any point Q ∈ K(Fp), the point Li,j + Q is well-defined.
The map Q 7→ Li,j +Q is given by a (4× 4)-matrix which we denote Wi,j .
These matrices Wi,j are given in [CR24, App. A] in terms of the coefficients
of 0K and the Rosenhain invariants.

To compute the pairing t2(Li,j , Q) using cubical arithmetic2, we compute

2For full details, see [Rob24, Alg. 5.2]. For a more friendly introduction, see [PRR+25].
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two values3 λQ and λLi,j using the translation matrix Wi,j . The pairing
t2(Li,j , Q) is then given by the Legendre symbol of λQ/λP . We describe the
cubical pairing computation of degree 2 on K(Fp) in Algorithm 1, which is
slightly adjusted from [Rob24] for easier implementation.

Algorithm 1 Degree-2 cubical pairing computation on K(Fp)

Input: The point Q as (Q1, Q2, Q3, Q4), the normalization index nij , and
the matrix Wi,j .

Output: The reduced Tate pairing t2(Li,j , Q) ∈ µ2.

1: L̃i,j ←Wi,j · 0̃K
2: ˜Li,j +Q←Wi,j · Q̃ ▷ Compute Li,j +Q

3: 2̃Li,j ←Wi,j · L̃i,j ▷ Translate Li,j

4: ˜2Li,j +Q←Wi,j · ˜Li,j +Q ▷ Translate Li,j +Q

5: λLij ← (2̃Li,j)ni,j/(L̃i,j)ni,j

6: λQ ← ( ˜2Li,j +Q)ni,j/( ˜Li,j +Q)ni,j

7: ζ ← Legendre(λQ/λLij )
8: return ζ

Remark 8. A naive implementation of Algorithm 1 does not outperform the
previous method due to the many matrix multiplications, and we therefore
do not assess its performance. Instead, we go straight to optimizing this
computation in Section 5.

5 Optimizing Cubical Pairings

In this section we optimize the computation of level-2 cubical pairings on
Gaudry–Schost’s Kummer surface. We first discuss generic improvements,
which apply in general to improve cubical pairings of degree 2 on Kum-
mer surfaces, before we describe specific improvements that are possible by
precomputation given a specific Kummer surface.

5.1 Generic improvements

Replace inversions by multiplications. As inversions are rather costly
in finite fields, we prefer to avoid them as much as possible in our computa-
tions. Luckily, in Tate pairing computations, our results live in the quotient

3More properly speaking, monodromies [Sta07; Rob24].
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k∗/k∗n, which allows us to remove inversions if n is small enough, using the
following observation.

Observation 9. In k∗/k∗n, for λQ, λP ∈ k∗, we have λn
P ∈ k∗, hence,

λQ

λP
≡

λQ

λP
· λn

P ≡ λQ · λn−1
P .

In particular, for n = 2, we have λQ/λP ≡ λQ · λP .

As we focus only on the degree-2 Tate pairing, we are essentially able to
remove most inversions in our cubical arithmetic. For the reduced Tate
pairing, one can rephrase the above observation: the Legendre symbol of
1/α is the same as the Legendre symbol of α.

An easy basis of K[2]. We are free to choose our basis B1, . . . , B4 of K[2]
with respect to which we compute the profile t[2](Q) = (t2(Bi, Q))4i=1. We
make the following observation.

Observation 10. The matrices W1,2, W3,4, and W5,6 are permutation ma-
trices, hence, their action on Q = (Q1, Q2, Q3, Q4) ∈ K(Fp) is essentially
free. In particular, the computation of t2(Li,j , Q) is significantly cheaper for
(i, j) ∈ {(1, 2), (3, 4), (5, 6)}.

Therefore, choosing (arbitrarily) a basis with B3 = L3,4 and B4 = L5,6 saves
a significant amount of multiplications in the computation of t2(B3, Q) and
t2(B4, Q), and therefore in the profile t[2](Q).

Partial matrix multiplication. In the computation of λQ, we require

the action of Wi,j on ˜Li,j +Q = (l1, l2, l3, l4) to compute the translation.
However, in line 6 and later, we only need the k-th index of the result, for

some predetermined 1 ≤ k ≤ 4. Hence, if W
(k)
i,j = (w1, w2, w3, w4) denotes

the k-th row ofWi,j , we only need to compute the k-th index ofWi,j · ˜Li,j +Q
as m1l1 +m2l2 +m3l3 +m4l4. This saves a significant number of multipli-
cations in the computation of t2(Li,j , Q) for (i, j) /∈ {(1, 2), (3, 4), (5, 6)}4.

5.2 Specific improvements

We now describe improvements that are possible when working on a specific
Kummer surface, in our case the Gaudry–Schost Kummer surface.

4The case (i, j) ∈ {(1, 2), (3, 4), (5, 6)} is covered by Observation 10 to be even cheaper.
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Removing the action of W 2
i,j. To compute the λQ required for t2(Li,j , Q),

we compute ˜Li,j +Q using the action of Wi,j on Q̃, and translate the result
again by Wi,j . This can be simplified by the following observation.

Observation 11. Let Q̃ = (Q1, Q2, Q3, Q4) ∈ K(Fp). Then ˜Li,j +Q =

Wi,j · Q̃ = (a1, a2, a3, a4) for some ai ∈ K(Fp). After normalizing ˜Li,j +Q

to a given index k ∈ {1, . . . 4}, we find that Wi,j · ak · ˜Li,j +Q = ak ·W 2
i,jQ̃.

For every possible (i, j), we have W 2
i,j = γi,j · I4 for some γi,j ∈ Fp. Hence,

λQ ≡
(
Wi,j · ak · ˜Li,j +Q

)
k
≡ ak ·

(
W 2

i,jQ̃
)
k
≡ ak · γi,j ·Qk

As we can precompute the Legendre symbol of γi,j on a specific Kummer
surface, we can significantly simplify the computation of λQ: we only need

to compute ak as the k-th index of Wi,j ·Q̃, which we can do using the partial
matrix multiplication. Combined, these improvements replace two full ma-
trix computations, at 16 multiplications each, by a single row multiplication
at 4 multiplications, per pairing t2(Li,j , Q) for (i, j) /∈ {(1, 2), (3, 4), (5, 6)}.

For pairings with (i, j) ∈ {(1, 2), (3, 4), (5, 6)}, we find that we only
need to know the permutation given by Wi,j . For example, as W3,4 maps
(a, b, c, d) 7→ (d, c, b, a), a similar derivation shows that we can compute λQ

as Q1 ·Q4.

Precompute the Legendre symbol of λLi,j . It is clear that λLi,j does
not depend on the point Q we are pairing with. Hence, on a given Kummer
surface, we may precompute the Legendre symbol of λLi,j for each index
pair (i, j). To compute t2(Li,j , Q), we then simply compute the Legendre
symbol of λQ and adjust by −1 if λLi,j is non-square.

5.3 Optimized profiles of degree 2

Now, we combine all these improvements. Let ⟨L2,3, L3,5, L3,4, L5,6⟩ = K[2]
be the basis, then we compute the profile t[2](Q) of a point Q ∈ K(Fp),
originating from J (Fp), in Algorithm 2. This is an algorithmic description
of Theorem 1: computing the profile t[2](Q) for Q ∈ K(Fp) originating from
J (Fp), at a cost of 10M+ 6A+ 4L, is enough to determine Q ∈ G.

Remark 12. Heuristically, it seems infeasible to compute a profile with fewer
than 4 Legendre symbols, as the profile requires 4 bits of information. As
the overhead, 10M+6A, is negligible compared to the cost of the Legendre
symbols, we did not pursue further optimizations. If one assumes Q̃ obtained
as a normalized point (1, Q2, Q3, Q4), we save an extra 4M+ 1A.
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Algorithm 2 Optimized pairing computation on K(Fp)

Input: The point Q̃ = (Q1, Q2, Q3, Q4), row 1 of W2,3 as (w1, w2, w3, w4)
with w1 = 1, and row 3 of W3,5 as (w′

1, w
′
2, w

′
3, w

′
4) with w′

3 = −1.
Output: The profile t[2](Q) ∈ µ4

2.
1: T1 ← Q1 · (w1Q1 + w2Q2 + w3Q3 + w4Q4)
2: T2 ← Q3 · (w′

1Q1 + w′
2Q2 + w′

3Q3 + w′
4Q4)

3: T3 ← Q1 ·Q4

4: T4 ← Q1 ·Q3

5: For i ∈ {1, 2, 3, 4} do ζi ← Legendre(Ti),
6: return (ζ1, ζ2, ζ3, ζ4)

5.4 Results

To the best of our knowledge, there are no previous attempts in the literature
to perform subgroup membership testing on Kummer surfaces. We therefore
compare our results against a.) the naive approach using a ladder, and b.)
the approach of Section 4.1 to compute the profile.

a.) Verifying [r]Q = 0K using a ladder takes almost 7000 operations in Fp,
whereas the optimized cubical profile takes only 478 operations5 in Fp.

b.) The overhead, i.e., everything beyond the Legendre symbols, of the
approach of Section 4.1 is 76M+33S+53A, whereas Algorithm 2 computes
the profile with an overhead of 10M + 6A operations in Fp. Assuming
S = 0.8M andA = 0.5M, the latter takes roughly 10 times fewer operations.

Including origin check. Depending on the application, one may need to
verify that Q ∈ K(Fp) originates from J or its twist.

a.) The naive approach verifies the origin from the fact that only a point
originating from the Jacobian could have order r, and so, we verify the
origin at no extra cost. Including the origin check to the cubical approach
adds 140 Fp operations, bringing the total to 618 operations in Fp. The
cubical approach is therefore still more than ten times faster than the naive
approach, even including the origin check.

5We estimate a Legendre symbol computation at 125S+9M using an optimal addition
chain. In practice, this can be done much faster [Por20; AHST23].
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b.) For the pairings from Section 4.1, this only requires an extra Legendre
symbol, whereas for the cubical pairings, this adds an extra 22M+1S+13A,
beyond the extra Legendre symbol, to the overhead. The resulting overhead
is however still more than three times less.

6 Future Work

One can apply the generalization of Koshelev’s membership test to other
Kummer surfaces, or essentially any (Kummer variety of an) abelian variety,
and optimize the required cubical arithmetic.

The optimized cubical profile computation may be used more widely to
sample points of order 2f on Kummer surfaces: by forcing a non-trivial
profile during sampling, we force Q ∈ K \ [2]K. For example, initialize
Q = (X,Y, Z, T ) and set X = 1 and Z to any non-square element in Fp to
force t2(L5,6, Q) = −1, which ensures a non-trivial profile. We then look
for suitable Y and T to ensure Q ∈ K(Fp). In practice, Tate pairings are
often used for basis generation, and so, simpler 2-pairings should apply more
broadly to generate a basis of 2f -torsion, with 2f maximal.
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