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Abstract. We study a new pairing, beyond the Weil and Tate pairing. The Weil
pairing is a non-degenerate pairing E[m] × E[m] → µm, which operates on the
kernel of [m]. Similarly, when µm ⊆ F∗

q , the Tate pairing is a non-degenerate pairing
E[m](Fq) × E(Fq)/[m]E(Fq) → µm, which connects the kernel and the rational
cokernel of [m]. We define a pairing

⟨ ⟩m : E(Fq)/[m]E(Fq) × E(Fq)/[m]E(Fq) → µm

on the rational cokernels of [m], filling the gap left by the Weil and Tate pairing.
When E[m] ⊆ E(Fq), this pairing is non-degenerate, and can be computed using
three Tate pairings, and two discrete logarithms in µm, given a basis for E[m]. For
m = ℓ prime, this pairing allows us to study E(Fq)/[ℓ]E(Fq) directly and to simplify
the computation for a basis of E[ℓk], and more generally the Sylow ℓ-torsion. This
finds many applications in isogeny-based cryptography when computing ℓk-isogenies.
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Warning
Although the contents of this work are complete, in the sense that they form a cohesive
analysis, I am not yet satisfied with this work as a full article or preprint. They are
therefore only posted as a note on my website, which may serve others for inspiration.

1 Introduction
Pairings are ubiquitous in modern cryptography, from their first uses in the MOV-
attacks [MVO91; FR94] to their applications in protocols [HSSI99; Jou04; BLS01; BF01;
BKLS02; GHS02; Jou02; BGLS03; BLS04; Gal05; Ver09], exploiting their bilinearity and
other unique characteristics. Most commonly, cryptography uses the Weil pairing [Wei40;
Mil04] and the Tate pairing [Tat62; Lic69], and their variations [HSV06; Bru11]. For this
work, we may think of the Weil pairing of degree m, for m ∈ N as the non-degenerate
bilinear map

em : E[m]× E[m]→ µm,

where E[m] is the m-torsion subgroup of an elliptic curve E over a finite field Fq, and µm

is the group of m-th roots of unity in Fq. Similarly, we may think of the (reduced) Tate
pairing of degree m as the bilinear map

tm : E[m](Fq)× E(Fq)/[m]E(Fq)→ µm,

which is non-degenerate when µm ⊆ F∗
q .
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More recently, isogeny-based cryptrography often uses these pairings, as they find
many natural applications in cryptonanalysis [CHM+23; MS24] and core algorithm proce-
dures [CJL+17; ZSP+18; KT18; Reĳ23; LWXZ24; CEMR24; DEF+25]. It is not difficult
to see why: Vélu’s formulas [Vél71] allow us to compute an isogeny ϕ : E → E′ from a
description of its kernel G = kerϕ. Hence, given a point P ∈ E of order n, we can compute
a (cyclic) isogeny of degree n with kernel G = ⟨P ⟩. As the complexity of these formulas
is O(|G|), or O(

√
|G|) using

√
élu [BDLS20], we improve the performance by factoring ϕ

into prime-degree isogenies ϕi. Hence, we often want to compute isogenies of prime-power
degree ℓk, which we may then describe by a point P of order ℓk, factored into k isogenies
of degree ℓ. To find such points, or to describe them concisely, requires a basis of E[ℓk],
where ℓk is such that there are no rational points of order ℓk+1 or larger. Equivalently,
such points have no rational preimages under [ℓ] and we should therefore look for such
points in the set E(Fq) \ [ℓ]E(Fq). This is where the Tate pairing comes in, as it allows us
to identify points in E(Fq) \ [ℓ]E(Fq) if we have knowledge of the rational kernel E[ℓ](Fq).
It is therefore no surprise that basis generation algorithms in the literature use the Tate
pairing, whereas basis change algorithms use either the Tate or Weil pairing. Nevertheless,
these pairing techniques only help us indirectly: the Tate pairing allows us to identify
points in E(Fq) \ [ℓ]E(Fq), and the Weil pairing allows us to verify a basis for E[ℓk], but
neither operates directly on the cokernel of [ℓ].

Contributions. This work introduces the cokernel pairing ⟨ ⟩m, which operates directly
on the cokernel of [m]:

⟨ ⟩m : E(Fq)/[m]E(Fq)× E(Fq)/[m]E(Fq)→ µm.

When m = ℓ is a small prime, this pairing allows us to find a basis for E[ℓk](Fq) more
directly: Our main theorem, Theorem 1, shows that

⟨P,Q⟩ℓ ̸= 1 if and only if ⟨P,Q⟩ = E(Fq)/[ℓ]E(Fq).

Among others, this implies that some multiple of P and Q are a basis for E[ℓk](Fq), which
is our main application of the cokernel pairing.

From a mathematical point-of-view, the cokernel pairing fills a symmetry gap: the Weil
pairing em works with the kernel E[m] for both arguments, the (reduced) Tate pairing tm
connects the rational kernel E[m](Fq) to the rational cokernel E(Fq)/[m]E(Fq), and the
cokernel pairing works with this rational cokernel for both arguments.

We provide a detailed explanation of the underlying dualities between several key
objects, such as the m-torsion E[m] and the Sylow m-torsion Sm(E), which expands on
previous descriptions in the literature [Rob23; CR24; Rei25]. This deepened understanding
of the duality between these objects helps us in developing practical applications of pairings.
As an example, we show how the cokernel pairing simplifies basis generation, state several
methods to compute the cokernel pairing, and demonstrate these using concrete examples.
Furthermore, we give several results that allow us to interpret the cokernel pairing in terms
of other pairings. This leads to several interesting questions in many directions.
Remark 1. This pairing is similar to a pairing defined by Tate for local fields, derived from
cohomology, which we discuss in Appendix A. There seems to be no work that explores
this pairing in the context of isogeny-based cryptography, where the Sylow ℓ-torsion is a
remarkably central object. Hence, we hope that this work contributes to our understanding
of this pairing and the Sylow ℓ-torsion in this specific context.

Acknowledgements. We thank Damien Robert for insightful discussions on the coho-
mological interpretation of the cokernel pairing, and deeper insights into the dualities that
appear in this context. We thank the whole ISOCRYPT team from KU Leuven for their
support, feedback, and useful ideas.
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2 Preliminaries
In this section, we introduce the necessary background on pairings, profiles, and the Sylow
ℓ-torsion.

Notation. We denote the finite field of size q by Fq, and we assume that q = pk for a
prime p, the characteristic of Fq. We denote the multiplicative group of non-zero elements
of Fq by F∗

q , which is a cyclic group of order q − 1. We denote the algebraic closure of Fq

by Fq and the m-th roots of unity in Fq by µm.
For elliptic curves over Fq, we denote the neural element of E by 0E , and π always

denotes the Frobenius endomorphism (x, y) 7→ (xq, yq) with respect to Fq. We use the
word rational to refer to something defined over the base field Fq, for example, E is rational
when it is defined over Fq, and P ∈ E is rational when P ∈ E(Fq).

For an integer m ∈ N, we denote the Weil pairing by em, the Tate pairing by Tm, and
the reduced Tate pairing by tm. We denote the Sylow m-torsion by Sm(E), which we
describe in more detail in Section 2.4. We use the word cofactor with respect to some
prime ℓ to refer to the smallest integer h such that [h]P ∈ Sm(E) for all P ∈ E(Fq). Given
the order N of E(Fq), we may use h = N/ℓvℓ(N), where vℓ(N) is the ℓ-adic valuation of
N . Simply put, for N = ℓk · h, we can use the cofactor h.1 We somewhat misuse the
word basis, as we sometimes refer to a basis (P,Q) when these points are independent and
generate a certain set, even though there are relations between the generated points, i.e.,
P and Q are only a generating set.

2.1 Pairings
In general, a pairing A×B → C is a bilinear map between abelian groups A, B and C.
In this work we are interested in abelian groups A and B that are subgroups or quotient
groups of an elliptic curve E over a finite field Fq, and similarly C is a subgroup or quotient
group of F∗

q . Central to this work are the subgroups and quotient groups derived from the
multiplication-by-m endomorphisms [m] : P 7→ [m]P , namely, the kernel

E[m] = {P ∈ E | [m]P = 0E},

and, viewing [m] as a map E(Fq)→ E(Fq), the cokernel

E(Fq)/[m]E(Fq) = {P + [m]E(Fq) : P ∈ E(Fq)}.

For the rest of this section, we assume that m is a positive integer coprime to the
characteristic of Fq, and we let E be an elliptic curve over Fq. Some results are specialized
to the case where m = ℓ is a small odd prime, which is our main case of interest.

2.2 The Weil Pairing
The Weil pairing [Wei40] of degree m is a non-degenerate bilinear pairing

em : E[m]× E[m]→ µm. (1)

For abelian varieties A, we can similarly derive the Weil pairing as a pairing A[m]×
Â[m]→ µm, where Â is the dual abelian variety of A [Sil10]. As elliptic curves are naturally
isomorphic to their duals, we get a canonical principal polarization E → Ê, which allows
us to recover the Weil pairing on E itself. Similarly, Jacobian varieties of non-singular
curves with a rational point come equipped with such a principal polarization. In such

1This may technically not be the smallest integer that clears all but the ℓ-torsion, but works for our
needs.
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cases, we may simply write em, with no need to specify the polarization λ : A→ Â against
which we define the Weil pairing. More details can be found in the book by Edixhoven,
Van der Geer, and Moonen [EVM12, Ch. 11].

The Generalized Weil Pairing. This generalized notion of the Weil pairing on abelian
varities allows us to define the Weil-Cartier pairing [EVM12; Rob23] with respect to an
m-isogeny f : A→ B. This results in a pairing ker f × ker f̂ → µm, where f̂ : B̂ → Â is
the dual isogeny.

2.3 The Tate Pairing
Assuming µm ⊆ F∗

q , the Tate-Lichtenbaum pairing [Tat62; Lic69] of degree m, hereafter
simply the Tate pairing, is a non-degenerate bilinear pairing

Tm : E[m](Fq)× E(Fq)/[m]E(Fq)→ F∗
q/F∗,m

q . (2)

This pairing was introduced in a cryptographic context by Frey and Rück [FR94]. For
cryptographic purposes, working with equivalence classes in F∗

q is inconvenient. Hence, we
may ‘reduce’ the Tate pairing by applying a final exponentiation by q−1

m , which maps to
µm. This gives the reduced Tate pairing

tm : E[m](Fq)× E(Fq)/[m]E(Fq)→ µm. (3)

The groups F∗
q/F∗,m

q and µm are naturally dual to each other: When we view exponentiation
by m as a map F∗

q → F∗
q , the final reduction induces an isomorphism

F∗
q/F∗,m

q
∼−→ µm, z 7→ z

q−1
m , (4)

between the cokernel F∗
q/F∗,m

q and the kernel µm We stress that, contrary to the Weil
pairing, the Tate pairing crucially relies on the field of definition that we are working over,
as is clear from its definition.

Link to the Weil Pairing. When E[m] ⊆ E(Fq), an alternative definition of the
reduced Tate pairing can be obtained using a preimage R of Q, e.g., a point such that
[m]R = Q. We get

tm(P,Q) = em(P, π(R)−R). (5)

Written in this way, we clearly see the arithmetic nature of the Tate pairing, as we take
Frobenius π with respect to a field Fq. If we compute the Tate pairing for the same points
over a different field, we may get a different result. In particular, a non-trivial Tate pairing
may become trivial when we extend to the field of definition of R.

The Generalized Tate Pairing. Similar to the Weil pairing, we may also generalize
the Tate pairing with respect to an m-isogeny f : A → B over Fq. This results in the
Tate-Cartier pairing, also known as the generalized f -Tate pairing or the Tate pairing
associated to f . Bruin [Bru11] shows that this pairing between the rational kernel and
rational cokernel of f is non-degenerate when ker f is annihilated by [q − 1], and gives a
description as ker f̂ (Fq)× coker f (Fq)→ F∗

q .

Computation of the Pairings. Miller’s algorithm [Mil04; FR94] computes both the
Weil and Tate pairing efficiently, which generalize well to Jacobians. In recent work,
Robert [Rob24] introduces cubical arithmetic to compute pairings on abelian varieties and
Kummer varieties, generalizing previous work [LR16; Sta08; Sta11].
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2.4 The Sylow ℓ-Torsion
The Sylow ℓ-torsion Sℓ(E) is the subgroup E[ℓ∞](Fq) ⊆ E(Fq) containing all points whose
order is a power of ℓ.

Definition 1. Let ℓ be a prime and E an elliptic curve over Fq. The Sylow ℓ-torsion
Sℓ(E) over Fq is the subgroup

Sℓ(E) := E[ℓ∞](E) ∼= Z/ℓfZ× Z/ℓgZ

with f, g ∈ N and f ≥ g. We say Sℓ(E) is symmetric when f = g, e.g. Sℓ(E) = E[ℓf ].
When the Sylow ℓ-torsion is rank r, we refer to a set of r points as a basis of Sℓ(E)

whenever their linear combinations generate all elements of Sℓ(E).

In the case of elliptic curves the rank is either 0, 1, or 2. In this paper we assume that
E[ℓ] is rational, and so this rank will be 2 in essentially all cases. Thus, on elliptic curves
with E[ℓ] rational, a basis for the Sylow ℓ-torsion is simply a pair of points (P,Q) that
generate all rational points of order ℓk for some k ∈ Z>0.

The Sylow-ℓ torsion is closely related to the rational cokernel E(Fq)/[ℓ]E(Fq) and
the kernel E[ℓ]. First, classes in the rational cokernel are in one-to-one correspondence
with classes in Sℓ(E)/[ℓ]Sℓ(E) which comes down to ‘ignoring’ all other torsion, which we
can formalize as multiplication by h, where h is the cofactor with respect to ℓ. Second,
as Sℓ(E)/[ℓ]Sℓ(E) is dual to E[ℓ], we may associate a point Pℓ ∈ E[ℓ] to any class
P ∈ E(Fq)/[ℓ]E(Fq).

Isogeny-based cryptography often works with supersingular curves E/Fp2 of order
(p+ 1)2, where the torsion structure is isomorphic to Z/(p+ 1)Z× Z/(p+ 1)Z. In such
cases, the Sylow ℓ-torsion is symmetric, and isomorphic to Z/(ℓf )Z× Z/(ℓf )Z, where f is
the largest integer such that ℓf | p+ 1.

2.5 The Tate Profile
When the Tate pairing of degree m is non-degenerate, we may study the cokernel
E(Fq)/[m]E(Fq) more precisely using a rational basis2 (P1, · · · , Pr) of E[m](Fq), and
the map

t[m] : E(Fq)→ µr
m, Q 7→ (tm(P1, Q), · · · , tm(Pr, Q)).

We call t[m] the Tate profile of Q with respect to the basis (P1, · · · , Pr) [Rob23; CR24;
Rei25]. The profile is trivial if and only if Q ∈ [m]E(Fq), and whenever the profiles of
a set (Q1, . . . , Qr) generate µr

m, the set generates the cokernel E(Fq)/[m]E(Fq). Under
mild assumptions, E[m] ∼−→ E(Fq)/[m]E(Fq) ∼−→ µr

m, where the profile provides us with a
coordinate system on E(Fq)/[m]E(Fq) through the map to µr

m. The rational kernel and
cokernel are dual, hence isomorphic, but the isomorphism given by the profile crucially
depends on a choice of basis.

3 The Cokernel Pairing
The definition of the reduced Tate pairing via Equation (5) motivates us to look at a
pairing on the rational cokernels

⟨ ⟩m : E(Fq)/[m]E(Fq)× E(Fq)/[m]E(Fq)→ µm

2Clearly, for elliptic curves E[m](Fq) is at most rank 2. However, the approach in this section
generalizes to abelian varieties of dimension g, where the rank is up to 2g. Our phrasing accommodates
this generalization.
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using points [m]RP = P and [m]RQ = Q to define

⟨P,Q⟩m := em (π(RP )−RP , π(RQ)−RQ) .

We are mostly interested in the case where m = ℓ is a small prime, as studying the
Sylow ℓ-torsion is most interesting for this case. Hence, we may sometimes switch to the
more general case m ∈ N, when this does not create extra difficulties or subtleties, and
focus on m = ℓ otherwise.

We first analyze the map P 7→ π(RP )−RP , before we analyze the cokernel pairing, to
show that the map behaves well.

Lemma 1. If E[m] ⊆ E(Fq), then the map E(Fq) → E[m] that maps P 7→ π(R) − R
for some R ∈ E(Fq) such that [m]R = P is a well-defined homomorphism with kernel
[m]E(Fq), which induces an isomorphism Φm : E(Fq)/[m]E(Fq) ∼−→ E[m].

Proof. By [m](π(R)−R) = π([m]R)− [m]R = π(P )− P = 0E , we indeed find Φm(P ) ∈
E[m]. Let R,R′ ∈ E(Fq) such that [m]R = P and [m]R′ = P . Then R′ = R+ T for some
T ∈ E[m]. As E[m] ⊆ E(Fq), we have π(T ) = T , and so π(R′)−R′ = π(R)−R+π(T )−T =
π(R)−R. Thus, the map is well-defined.

We get that Φm(P ) = 0E only if π(R) = R, which implies R ∈ E(Fq) and so
P = [m]R ∈ [m]E(Fq), so ker Φm = [m]E(Fq). As both kernel and cokernel have the same
size, we obtain the isomorphism

Φm : E(Fq)/[m]E(Fq) ∼−→ E[m].

Corollary 1. Let ℓ be a prime. When Φℓ(P ) ̸= 0E and [ℓ]R = P for some R ∈ E(Fq),
then R ∈ E(Fqℓ).

Proof. When Φℓ(P ) ̸= 0E , given that π (π(R)−R) = π(R)−R, we find that

π2(R)−R = π (π(R)−R) + π(R)−R = [2](π(R)−R),

and by induction this gives πk(R)−R = [k](π(R)−R). Thus, for k = ℓ we find πℓ(R) = R,
that is, R ∈ E(Fqℓ).

In fact, with our assumption of rational torsion [m] divides π − 1, and so we may also
write Φm as the endomorphism π−1

ℓ . As an isomorphism between the rational cokernel
and the kernel, Φm identifies the ‘position’ of points in the Sylow m-torsion with respect to
their position in E[m]. This is equivalent to the positioning given by the Tate profile t[m]
with respect to some basis T1, T2 of the kernel, encoded as a value in µ2

m. Furthermore,
Φm is the curve-equivalent to the ‘reduction’ map F∗

q/F∗,m
q

∼−→ µm from Equation (4).

3.1 The Cokernel Pairing
We get a straightforward definition of the (reduced) cokernel pairing ⟨ ⟩m from the map
Φm.

Definition 2. The reduced cokernel pairing of degree m is a pairing

⟨ ⟩m : E(Fq)/[m]E(Fq)× E(Fq)/[m]E(Fq)→ µm.

Given P,Q ∈ E(Fq) as representants of their class in E(Fq)/[m]E(Fq), we define

⟨P,Q⟩m := em (Φm(P ),Φm(Q)) .
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The (reduced) cokernel pairing is naturally connected to the Sylow m-torsion in the
same way that the Weil pairing is naturally connected to E[m], with the Tate pairing
providing the bridge between these two. We first prove general properties of the cokernel
pairing, before we dive deeper into this connection.

Proposition 1. Assuming the m-torsion is rational, the reduced cokernel pairing of degree
m is alternating, bilinear, non-degenerate, and compatible with isogenies ϕ : E → E′.

• For all P,Q ∈ E(Fq), we have ⟨P,Q⟩m = ⟨Q,P ⟩−1
m .

• For all P1, P2, Q ∈ E(Fq), we have ⟨P1 +P2, Q⟩m = ⟨P1, Q⟩m · ⟨P2, Q⟩, and similarly
⟨P,Q1 +Q2⟩m = ⟨P,Q1⟩m · ⟨P,Q2⟩

• For a given P ∈ E(Fq), if ⟨P,Q⟩m = 1 for all Q ∈ E(Fq), then P ∈ [m]E(Fq), and
vice versa for Q.

• For a separable isogeny ϕ : E → E′ over Fq and P,Q ∈ E(Fq), we have ⟨ϕ(P ), ϕ(Q)⟩m =
⟨P,Q⟩deg ϕ

m .

Proof. These properties are easily shown using the properties of the Weil pairing, and the
map Φm. As the Weil pairing is alternating, we get the same for the cokernel pairing by

⟨P,Q⟩m = em (Φm(P ),Φm(Q)) = em (Φm(Q),Φm(P ))−1 = ⟨Q,P ⟩−1
m .

Similarly, bilinearity follows by bilineairity of the Weil pairing and the fact that Φm is
a homomorphism. For non-degeneracy, we obtain from the Weil pairing that Φm(P ) = 0E ,
which implies P ∈ [m]E(Fq) by Lemma 1, and similarly for Q. Furthermore, when
P ∈ [m]E(Fq) then R ∈ E(Fq), and so Φm(P ) = 0 which implies ⟨P,Q⟩m = 1, and
similarly for Q. Lastly, compatibility with isogenies follows from the compatibility of the
Weil pairing with isogenies, together with the fact that ϕ(RP ) is a pre-image of Rϕ(P ).

The last property is interesting when m | deg ϕ, as we get ⟨ϕ(P ), ϕ(Q)⟩m = 1 for any
P,Q ∈ E(Fq). Intuitively, either P or Q gets mapped to [m]E′(Fq), or we find that their
m•-torsion ‘overlaps’. To make this more precise, we discuss the connection to the Sylow
ℓ-torsion.

3.2 Connection to the Sylow ℓ-torsion
Let m = ℓ be prime. Recall that we may represent Sℓ(E)/[ℓ]Sℓ(E) by classes from
E(Fq)/[ℓ]E(Fq), where Sℓ(E) is the Sylow ℓ-torsion of E, and that Sℓ(E)/[ℓ]Sℓ(E) is dual
to the ℓ-torsion E[m], with the map Φm giving us the isomorphism Sℓ(E)/[ℓ]Sℓ(E) ∼−→ E[ℓ].
This inspires the following definition.

Definition 3. A point P ∈ E(Fq) \ [ℓ]E(Fq) is above a point Pℓ ∈ E[ℓ] if Φℓ(P ) = Pℓ.

Understanding Sℓ(E) allows us to find a point of maximal order ℓf or a basis of points
P,Q that allow us to compute any ℓg-isogeny. Note that a point P ∈ E(Fq) [ℓ]E(Fq) is not
per se of order ℓf or ℓg, though one may use the Tate pairing to identify such points [Rob23;
CR24]. For our purposes, we mainly need that some multiple of representants of generators
E(Fq)/[ℓ]E(Fq) generate SℓE too [Rei25]. The following theorem is the crucial connection
of Sℓ(E) to the cokernel pairing.

Theorem 1. Let P,Q ∈ E(Fq), and let h be the cofactor of E with respect to ℓ. Then,
[h]P and [h]Q generate Sℓ(E) if and only if ⟨P,Q⟩ℓ ̸= 1.
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Proof. The proof is a combination of two insights: that Φℓ gives us an isomorphism between
Sℓ(E)/[ℓ]Sℓ(E) and E[ℓ], and that the Weil pairing eℓ(P ′, Q′) is non-trivial if and only if
P ′, Q′ are a basis of E[ℓ].

If we have a basis P,Q of Sℓ(E), the points Φℓ(P ) and Φℓ(Q) are non-trivial, otherwise
P or Q has a rational preimage under [ℓ]. Then, Φℓ(P ) and Φℓ(Q) are independent,
otherwise the classes [P ] = λ[Q] in Sℓ(E)/[ℓ]Sℓ(E) for some scalar λ, which implies P and
Q are not a basis. Hence, ⟨P,Q⟩ℓ = eℓ (Φℓ(P ),Φℓ(Q)) ̸= 1.

Similarly, if ⟨P,Q⟩ℓ ̸= 1 then Φℓ(P ) and Φℓ(Q) are a basis of E[ℓ]. Hence, the classes
[[h]P ] and [[h]Q] generate Sℓ(E)/[ℓ]Sℓ(E), which implies [h]P and [h]Q generate Sℓ(E).

Thus, the cokernel pairing plays a dual role to the Weil pairing: whereas a Weil pairing
of order ℓ implies a basis for E[ℓ], a non-trivial cokernel pairing of order ℓ implies a basis
for Sℓ(E). More generally, for composite m, we want the cokernel pairing value to be a
primitive m-th root of unity, similar to how the Weil pairing indicates a basis for E[m]
when the pairing is of order m. The isomorphism Φℓ connects the dual objects E[ℓ] and
Sℓ(E)/[ℓ]Sℓ(E), and the (reduced) Tate pairing allows us to transfer knowledge from one
to the other. We have visualised this in Figure 1.

×

Cokernel

Weil

Tate

ℓf ℓg

Figure 1: A visualisation of the Sylow ℓ-torsion, indicating in blue where the cokernel
pairing operates and in olive the kernel E[ℓ] where the Weil pairing operates, with the
Tate pairing transforming information from the kernel to the cokernel and back, as an
elevator from the first to the top floor.

Remark 2. The cokernel pairing requires the assumption that E(Fq) has rational ℓ-torsion.
This is not a strong restriction on the applicability of the cokernel pairing, as we need
rational ℓ-torsion to ensure that Sℓ(E) also has rank 2. If Sℓ(E) has rank 1, which implies
E[ℓ](Fq) has rank 1, then there is no need for a cokernel pairing, as we get a trivial pairing.
To find a generator of Sℓ(E) in this case, we may simply use the Tate pairing. In higher
dimensions, partially-rational cokernels are more interesting to study, in particular through
the isomorphism with the partially-rational kernel.

3.3 The Generalized Cokernel Pairing
Similar to the generalized Weil and Tate pairing described in Sections 2.2 and 2.3, there
seems to be no obstruction to generalizing the cokernel pairing to an isogeny f : E → E′

of degree m. By restricting the map Φm, which we denote Φf , we get an isomorphism
coker f (Fq) ∼−→ ker f (Fq), and similarly coker f̂ (Fq) ∼−→ ker f̂ (Fq). Thus, we may define
the following generalization.

Definition 4. Let f : E → E′ be an m-isogeny over Fq. The generalized f-cokernel
pairing is a pairing

⟨ ⟩f : coker f (Fq)× coker f̂ (Fq)→ µm.
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Given P ∈ E(Fq) and Q ∈ E′(Fq), we define

⟨P,Q⟩f := ef

(
Φf (P ),Φ

f̂
(Q)

)
,

where ef is the generalized Weil pairing ker f × ker f̂ → µm with respect to f .

4 Computation of the Cokernel Pairing
We describe two methods to compute the cokernel pairing over Fq using a concrete
instantiation of the map Φm, assuming that we know a basis T1, T2 of E[m]. We then give
two concrete examples of a cokernel pairing computation.
Remark 3. The most straightforward computation uses the points RP and RQ with
[m]RP = P and [m]RQ = Q in E(Fqm). Writing ψm(x) for the m-th division polynomial,
and ϕm and ωm as in [Sil09, III, Ex. 3.7], we may write the map [m] : E → E as

[m](x, y) =
(
ϕm(x)
ψ2

m(x) ,
ωm(x, y)
ψ3

m(x)

)
. (6)

Thus, we can find a preimage R of P by computing a non-zero root of ψ2
m(x) ·xP = ϕm(x),

which gives an x-coordinate of such a point R, and we find an associated y-coordinate by
solving the curve equation. Given RP and RQ, we may then compute Pm = π(RP )−RP

and Qm = π(RQ) − RQ in E(Fqm). We compute the Weil pairing em (Pm, Qm) over Fq

to get ⟨P,Q⟩m. This approach is usually rather expensive, as it requires us to go to the
extension field Fqm , which may be prohibitive for large m.

4.1 Using Weil and Tate pairings
Recall that Φm is the endomorphism π−1

m ∈ End(E). In [DEF+25, Appendix D], the
authors describe an algorithm that computes endomorphisms of the form a+bα

m over Fq,
assuming a basis for the m-torsion. For completeness, we repeat their algorithm for our
situation a = −1, b = 1, α = π in Algorithm 1. We assume a basis T1, T2 for E[m], and
set ζ = em(T1, T2) as a fixed m-th root of unity.

Algorithm 1 Rational computation of Φm

Input: A point P ∈ E(Fq), a basis T1, T2 of E[m], and ζ = em(T1, T2) ∈ µm.
Output: The point Φm(P ) ∈ E[m]

1: ζ1 ← tm(T1, P )
2: ζ2 ← tm(T2,−P )
3: r ← logζ(ζ2)
4: s← logζ(ζ1)
5: return rT1 + sT2

This algorithm costs two Tate pairings of degree m and two discrete logarithms in µm.
We may thus apply Algorithm 1 twice to obtain Φm(P ) and Φm(Q), and then compute
⟨P,Q⟩m by the Weil pairing of Φm(P ) and Φm(Q), which takes two more Tate pairings of
degree m and an inversion. This gives a total cost of six Tate pairings of degree m, two
discrete logarithms in µm, and an inversion.

We can improve on this, by noting that Algorithm 1 already describes Φ(P ) and Φ(Q)
as linear combinations aT1 + bT2 with a, b ∈ Z/mZ. This representation significantly
simplifies the computation of the Weil pairing between Φ(P ) and Φ(Q), and so we get

⟨P,Q⟩m = em (aT1 + bT2, cT1 + dT2) = ζad−bc,
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where ζ = em (T1, T2), for a total cost of four Tate pairings and four discrete logarithms in
µm. This is summarized in Algorithm 2.

Algorithm 2 Cokernel Pairing Computation using Weil Pairing
Input: Points P,Q ∈ E(Fq), a basis T1, T2 of E[m], and ζ = em(T1, T2) ∈ µm.
Output: The cokernel pairing ⟨P,Q⟩m ∈ µm

1: (ζ1, ζ2)← (tm(T1, P ), tm(T2,−P ))
2: (ζ3, ζ4)← (tm(T1, Q), tm(T2,−Q))
3: (a, b)←

(
logζ(ζ2), logζ0(ζ1)

)
4: (c, d)←

(
logζ(ζ4), logζ0(ζ3)

)
5: return ζad−bc

Remark 4. We stress that, at its core, the above computation of ⟨P,Q⟩m requires us to
first compute the positions of P and Q in Sm(E)/[m]Sm(E). This happens in Algorithm 1
by computing the Tate profile (tm(T1, P ), tm(T2, P )) with respect to a basis of E[m]. The
resulting Weil pairing essentially verifies the independence of these Tate profiles. Thus, if
we are only interested in non-triviality of the cokernel pairing, we may forgo the final Weil
pairing and the discrete logarithm computations, and verify the independence of the Tate
profiles themselves.

Inverse of Φm. Given Algorithm 1, we may similarly wonder if we can compute the
inverse Φ−1

m (T ) for T ∈ E[m] as a map E[m]→ E(Fq)/[m]E(Fq), given a basis (P,Q) of
E(Fq)/[m]E(Fq). This can be done with an algorithm very similar to Algorithm 1: given
ζ = ⟨P,Q⟩m, we compute ζ1 = tm(T,−P ) and ζ2 = tm(T,Q). We then find a = logζ(ζ2)
and similarly b = logζ(ζ1) to get Φ−1

m (T ) = aP + bQ.
Remark 5. Given the above algorithm, we may complete the duality between the Weil
pairing and the cokernel pairing. That is, given rational points P,Q ∈ E[m], we may also
compute em(P,Q) as ⟨Φ−1

m (P ),Φ−1
m (P )⟩m. This serves only for completeness, as it does

not seem to give any benefit in computing em(P,Q).

4.2 Using only Tate pairings
We may improve on the previous approach by the observation that we defined the (reduced)
Tate pairing tm(P,Q) of degree m by em (P, π(R)−R), where [m]R = Q. Thus, to
compute ⟨P,Q⟩m, we do not require both Φm(P ) and Φm(Q): it is enough to compute
Φm(P ) and use ⟨P,Q⟩m = tm(Φm(P ), Q). This gives Algorithm 3, with a total cost of
three Tate pairings of degree m and two discrete logarithms in µm.

Algorithm 3 Cokernel Pairing Computation using Tate Pairings
Input: Points P,Q ∈ E(Fq), a basis T1, T2 of E[m], and ζ0 = em(T1, T2) ∈ µm.
Output: The cokernel pairing ζ = ⟨P,Q⟩m ∈ µm

1: (ζ1, ζ2)← (tm(T1, P ), tm(T2,−P ))
2: (a, b)←

(
logζ0(ζ2), logζ0(ζ1)

)
3: Pm ← aT1 + bT2
4: ζ ← tm(Pm, Q)
5: return ζ

4.3 Two concrete examples of cokernel pairings
We describe two concrete examples of cokernel pairings, one for degree m = 2 and one
for degree m = 5, using the above methods to compute the pairing. We first discuss a
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supersingular example with symmetric Sylow m-torsion, for m = 5.

Example 1. Let p = 4 · 53 − 1, and let Fq = Fp(i) with i2 = −1. Let A = 439 + 245 · i
and let EA : y2 = x3 + Ax2 + x. The curve EA is supersingular, and EA(Fq) ∼= Z/(p +
1)Z× Z/(p+ 1)Z. Thus, for m = 5, we find that the Sylow m-torsion is symmetric, with
structure

S5(EA) ∼= Z/(53)Z× Z/(53)Z.

A basis T1, T2 for EA[5] is given by T1 = (269 + 210 · i, 319 + 35 · i) and T2 =
(498 + 486 · i, 271 + 66 · i), with ζ0 = e5(T1, T2) = 137 + 72 · i. We will compute the cokernel
pairing for P = (72 + 448 · i, 433 + 172 · i) and Q = (467 + 169 · i, 438 + 298 · i).

We first describe the naive approach: Solving Equation (6) for P in the field Fq(α),
with α5 + i+ 2 = 0 gives the point R = (xR, yR) where

xR = (439 + 185i)a4 + (321 + 112i)a3 + (461 + 412i)a2 + (178 + 222i)a + 357 + 67i,

yR = (295 + 234i)a4 + (335 + 159i)a3 + (141 + 409i)a2 + (317 + 20i)a + 37 + 322i.

which we map to Φ5(P ) = π(R) − R = (492 + 177i, 399 + 442i) ∈ E[5]. A similar
computation gives Φ5(Q) = (269 + 210i, 180 + 464i) ∈ E[5]. The Weil pairing of these two
gives us

⟨P,Q⟩5 = e5 (Φ5(P ),Φ5(Q)) = 137 + 427i.

This shows that suitable multiples of P and Q generate S5(E). As the Sylow 5-torsion
is symmetric, we furthermore get that 53 must divide the orders of P and Q. Using
Algorithm 1, we may similarly compute r = 4 and s = 4, as another way to compute
Φ5(P ) = [4]T1 + [4]T2, and use t5(Φ5(P ), Q) as another way to compute ζ = 137 + 427i.

We get a different behavior in the following example of an ordinary curve with asym-
metric Sylow m-torsion for m = 2.

Example 2. Let p = 62723, and let Fq = Fp(i) with i2 = −1. Let a = 29939 + 47523 · i
and b = 10859 + 6507 · i, and take E : y2 = x3 + ax + b. The curve E is ordinary, and
EA(Fq) ∼= Z/n1Z× Z/n2Z, where n1 = 26 · 3 · 7 · 365903 and n2 = 23. Thus, for m = 2,
the Sylow m-torsion is asymmetric, with structure

S2(E) ∼= Z/(26)Z× Z/(23)Z.

We use the basis T1 = (54664 + 59102 · i, 0) and T2 = (18942 + 2030 · i, 0) for E[2],
with ζ0 = e2(T1, T2) = −1. We compute the cokernel pairing for P = (29237 + 15619 ·
i, 1514 + 12755 · i) and Q = (51627 + 57123 · i, 17021 + 6724 · i) using Algorithm 1. From
t2(T1, P ) = 1 and t2(T2,−P ) = −1, we get r = 1 and s = 0, so Φ2(P ) = T1. Then,
by t2(Φ2(P ), Q) = t2(T1, Q) = −1 we find that ⟨P,Q⟩2 = −1, hence P and Q generate
E(Fq)/[2]E(Fq). Thus, some multiple of P and Q must generate S2(E), and this multiple
is given by the cofactor h = 3 · 7 · 365903, so that we get the Sylow-2 basis P ′ = [h]P
and Q′ = [h]Q. In this case, both P ′ and Q′ are of order 26. For elegance, we may take
R′ = [5]P ′ −Q′ instead, which has order 23, and use the basis (P ′, R′) for S2(E).

5 Connections to the Weil and Tate Pairing
We derive results that connect the cokernel pairing to the Weil pairing and Tate profiles.
Let m = ℓ be prime. When the Sylow ℓ-torsion is symmetric, say Sℓ(E) ∼=

(
Z/ℓfZ

)2, we
find an easy connection to the Weil pairing of degree ℓf . Namely, we get Sℓ(E) = E[ℓf ],
and we know that the Weil pairing eℓf (P,Q) has order ℓk for P,Q ∈ E[ℓf ] if and only if P
and Q are a basis for E[ℓf ].
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Lemma 2. Let E be an elliptic curve over Fq with symmetric Sylow ℓ-torsion of order ℓf .
Let P,Q ∈ E(Fq), and let h denote the cofactor with respect to ℓ. Then

⟨P,Q⟩ℓ ̸= 1 ⇒ eℓf ([h]P, [h]Q) is a primitive ℓf -th root of unity.

Furthermore, if P,Q ∈ E[ℓf ], then we get the other direction

eℓf (P,Q) is a primitive ℓf -th root of unity ⇒ ⟨P,Q⟩ℓ ̸= 1.

Proof. When ⟨P,Q⟩ℓ ≠ 1, we get that [h]P and [h]Q generate Sℓ(E) = E[ℓf ], and so the
Weil pairing eℓf ([h]P, [h]Q) is a primitive ℓf -th root of unity. Conversely, if eℓf (P,Q) is a
primitive ℓf -th root of unity, then P and Q generate E[ℓf ] = Sℓ(E), and so ⟨P,Q⟩ℓ ≠ 1.

In the above case, we get that both the cokernel pairing and the Weil pairing can be
seen as pairings on E[ℓf ]× E[ℓf ], however, the cokernel pairing maps to µℓ, whereas the
Weil pairing maps to µℓf . When Frobenius acts as a scalar, we can make this connection
more explicit, as we see in the following example.

Example 3. For supersingular elliptic curves E over Fp2 with trace t = ±2p, Frobenius
acts as a scalar. We take t = −2p for this example, although the same reasoning holds
for t = 2p. Then, the characteristic polynomial of π factors as (x + p)2, i.e., π acts as
[−p], and E(Fp2) = E[π − 1] = E[p+ 1], thus the Sylow ℓ-torsion is symmetric, given by
ℓf ∥ p+ 1. The endomorphism π−1

ℓ : E(Fq)→ E[ℓ] simplifies to the scalar multiplication
by −

[
p+1

ℓ

]
, that is, we clear everything except the ℓ-torsion.

In this situation, we do not need a basis for E[ℓ] to compute the cokernel pairing, as
we can replace Algorithm 1 by the scalar multiplication Pℓ := Φℓ(P ) = −

[
p+1

ℓ

]
P . To

compute ⟨P,Q⟩ℓ, we then compute the Tate pairing tℓ(Pℓ, Q). This essentially gives a new
interpretation of the basis computation approach described in [CJL+17] using descent.

Corollary 2. Let E be a supersingular elliptc curve over Fp2 with t = −2 and ℓf ∥ p+ 1.
Let P,Q ∈ E(Fq) and let h = p+1

ℓf . Then, if tℓ([h · ℓf−1]P,Q) ̸= 1, the points ([h]P, [h]Q)
form a basis for E[ℓf ].

Furthermore, this allows us to express the cokernel pairing of degree ℓ in terms of the
Weil pairing of degree ℓf on such supersingular curves.

Lemma 3. Let E be a supersingular elliptic curve over Fp2 with trace t = −2p and
with symmetric Sylow ℓ-torsion of order ℓf . Let P,Q ∈ E[ℓf ]. Let α ∈ Z/ℓZ such that
[α] = −

[
p+1
ℓf

]
on E[ℓ], so that Φℓ(P ) = −

[
p+1

ℓ

]
= [α · ℓk−1]P . Then

⟨P,Q⟩ℓ = eℓf (P,Q)α2·ℓf−1
.

Proof. Using enm(P,Q) = en([m]P,Q) when P ∈ E[nm] and Q ∈ E[n], we get

eℓf (P,Q)ℓf−1
= eℓf (P, [ℓf−1]Q) = eℓ([ℓf−1]P, [ℓf−1]Q).

Then, as Φℓ(P ) = [α · ℓf−1]P , we get

⟨P,Q⟩ℓ = eℓ(Φℓ(P ),Φℓ(Q))
= eℓ([α · ℓf−1]P, [α · ℓf−1]Q)

= eℓ([ℓf−1]P, [ℓf−1]Q)α2

= eℓf (P,Q)α2·ℓf−1
.
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Remark 6. Although in this example we find an alternative way to compute the cokernel
pairing that does not require a basis for E[ℓ] whenever the Sylow ℓ-torsion is symmetric,
we require either a scalar multiplication by [ℓf−1], or a Weil pairing of degree ℓf . Both are
expensive when f is large.

This above property is crucially related to the fact that we can rewrite the action of
π−1

ℓ is given by a scalar multiplication. Therefore, the above approach only works for
those specific supersingular curves. Even if the Sylow ℓ-torsion is symmetric, which implies
that a scalar multiplication E(Fq)→ E[ℓ] exists, the action of π−1

ℓ is different. We detail
a bit more on this interesting behaviour in the following example.

Example 4. Let E/Fq be an ordinary curve with Sℓ(E) = E[ℓf ]. Write E(Fq) ∼=
Z/n1Z× Z/n2Z with n2 | n1, so that we may write n1 = e · r · ℓf and n2 = r · ℓf for some
integers e and r. Let ⟨P,Q⟩ generate E(Fq) with P of order n1 and Q of order n2. Then one
can similarly define a map E(Fq)→ E[ℓ] by P 7→ [e · r · ℓf−1]P and Q 7→ [r · ℓf−1]Q, that
is, we are clearing the cofactor. However, this map is crucially different from Φℓ = π−1

ℓ .
For example, we may take p = 535303, ℓ = 3 and f = 3. Then the curve

E/Fp : y2 = x3 + 262034x2 + x,

satisfies Sℓ(E) = E[ℓf ]. As a basis take P = (533658, 176488) and Q = (402889, 457605).
By going to Fp3 , we are able to compute Φℓ(P ) = (503161, 476634) and Φℓ(Q) =
(525015, 190104), whereas clearing the cofactor gives us points P ′ = (434272, 111323) and
Q′ = (525015, 345199). These are connected by Φℓ(P ) = [2](P ′ −Q′) and Φℓ(Q) = [2]Q′.

In general, with no assumption on the Sylow ℓ-torsion or the trace of Frobenius, the
more natural connection of the cokernel pairing is to Tate profiles, as the following result
shows.

Lemma 4. The cokernel pairing ⟨P,Q⟩ℓ is non-trivial if and only if the Tate profiles
t[ℓ](P ) and t[ℓ](Q) are non-trivial and independent.

Proof. This is straightforward from Theorem 1 and the fact that non-trivial and independent
Tate profiles imply a basis for the Sylow ℓ-torsion Sℓ(E) [Rei25].

We stress the difference between these two objects: The Tate profile explicitly requires
a basis for E[ℓ] to give coordinates to Sℓ(E)/[ℓ]Sℓ(E), from which we derive that two
independent profiles generate the Sylow ℓ-torsion, after computing the position of these
points with respect to the given basis. The cokernel pairing, however, is formulated
independently of a basis, and does not give us the position of these points. On the one
hand, this implies that we have less information, however, we still have enough information
to obtain a basis for the Sylow ℓ-torsion. On the other hand, this implies that we may hope
to compute ⟨P,Q⟩ℓ without a basis for E[ℓ], which is impossible for the Tate profile.

6 Applications of the Cokernel Pairing
We derive the main application of the cokernel pairing directly from Theorem 1, namely,
finding a basis for the Sylow ℓ-torsion of an elliptic curve E over a finite field Fq. As isogeny-
based cryptography often works with supersingular curves over Fp2 , we are specifically
interested in finding a basis of E[ℓf ]. From a practical point of view, the cokernel allows us
to compute an implicit basis for E[ℓf ], which improves the efficiency of computing kernel
points of order ℓf in practice.
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6.1 Computing a Sylow torsion basis
Computing a basis for E[ℓf ] is highly optimized for ℓ = 2 on Montgomery curves using
entangled basis generation [ZSP+18], and can be generalized to other curve models when
E[2] is known [Rei25]. Nevertheless, these version of entangled basis generation are
unenlightening for ℓ > 2, and in this case, basis generation algorithms are more ad-hoc,
especially when the Sylow torsion is asymmetric.

Using the cokernel pairing, we find an intuitive and straightforward approach, given
a basis for the kernel E[m], even for composite m. If we do not care for efficiency and
simply want an easy method to find such a basis, we may sample random points in E(Fq),
until we find a pair (P,Q) where ⟨P,Q⟩m is a primitive m-th root of unity.

A more efficient approach uses a combination of Tate pairings and cokernel pairings. Let
T1, T2 be a basis for E[m]. First, we use the Tate pairings of degree m with kernel points
T1 and T2 with random cokernel points P ∈ E(Fq)/[m]E(Fq) until we get a non-trivial
pair ζ1 = tm(T1, P ) and ζ2 = tm(T2,−P ), i.e., they generate an order-m subgroup of µ2

m.
Given ζ1 and ζ2, we compute Φm(P ), and sample Q ∈ E(Fq) until ⟨P,Q⟩m is an m-th
root of unity, which requires the Φm(P ) computed before. After multiplication by [h], we
then have a basis for Sm(E). This is summarized in Algorithm 4

Algorithm 4 Sylow Torsion Basis generation
Input: A basis T1, T2 of E[m], and ζ0 = em(T1, T2) ∈ µm.
Output: A basis (P,Q) for Sm(E)

1: Repeat P $←− E(Fq) until ζ1 = tm(T1, P ) and ζ2 ← tm(T2,−P ) has order m
2: (a, b)←

(
logζ0(ζ2), logζ0(ζ1)

)
3: Pm ← aT1 + bT2

4: Repeat Q $←− E(Fq) until ζ = ⟨P,Q⟩m = tm(Pm, Q) has order m
5: return ([h]P, [h]Q)

Cost analysis. To compare against the performance of the approach using Tate profiles,
we compute the probability of success of both approaches, and the expected number of
degree-ℓ Tate pairings we need to compute.

First, both approaches sample a point P at random until the Tate pairings ζ1 = tℓ(T1, P )
and ζ2 = tℓ(T2,−P ) together are non-trivial.3 The probability of failure is 1

ℓ2 , as this only
happens when we sample P ∈ [ℓ]E(Fq). Hence, on average, this requires 2 · ℓ2

ℓ2−1 Tate
pairings for both approaches. Both approaches then need to sample a random Q that
completes the basis (P,Q). As P generates a subgroup of order ℓ in E(Fq)/[ℓ]E(Fq), which
itself has order ℓ2, we have a success probability 1− ℓ

ℓ2 = ℓ−1
ℓ , and so, we expect to require

ℓ/(ℓ− 1) samples of Q on average. Per Q, the approach using the cokernel pairing needs a
single Tate pairing to confirm Q is correct. The approach using Tate profiles requires two
Tate pairings to confirm Q is independent of P , except when one of ζ1 or ζ2 is trivial, in
which case it only requires one. Such trivial ζi happen with probability 2ℓ−1

ℓ2−1 , and so on
average, we need 2·(ℓ2−2ℓ)+1·(2ℓ−1)

ℓ2−1 ≈ 2− 2
ℓ+1 Tate pairings for Q.

Additionally, the cokernel approaches requires discrete logarithms to compute the
coefficients of Pℓ, whereas the Tate profile approach requires discrete logarithms to verify
the correctness of Q. The cost of these is equal for both approaches. Overall, we find that
the cokernel approach requires an expected 2 · ℓ2

ℓ2−1 + ℓ
ℓ−1 ≈ 3 + 1

ℓ+1 Tate pairings, and
saves roughly a Tate pairing, by directly computing the ‘correct’ Tate pairing tℓ(Pℓ, Q), in
comparison to the approach using Tate profiles.

3One may also consider the approach of randomly sampling P until ζ1 is non-trivial, and then computing
ζ2. The expected value is slightly worse for this approach.
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6.2 Constructing a kernel point of an ℓf -isogeny
The definition of an implicit basis [CEMR24] captures the difference between a basis for
E(Fq)/[m]E(Fq) and Sm(E)/[m]Sm(E).

Definition 5. Let P,Q ∈ E(Fq). We say that (P,Q) is an implicit basis for Sm(E) if
there is an h ∈ Z>0, co-prime to m, such that ([h]P, [h]Q) is a basis for Sm(E).

That is, we have a pair (P,Q) that we may consider as a basis for practical purposes, but
the points themselves are not in Sm(E), only after applying the map [h] : E(Fq)→ Sm(E).
An application is the following We can compress a point K ∈ E[ℓf ] using a deterministic
basis (P ′, Q′) of E[ℓf ] asK = [a]P ′+[b]Q′ with a, b ∈ Z/(ℓf )Z, so that we may communicate
K, and therefore the isogeny E → E/⟨K⟩, using only the values4 a and b, instead of, e.g., the
x-coordinate of K. This is a common technique in many isogeny-based schemes [JAC+17;
DKL+20; BDD+24; AAA+25]. Given a deterministically-sampled implicit basis (P,Q),
we can similarly write K = [a]([h]P ) + [b]([h]Q). The gain is that we may now compute K
as K = [h]([a]P + [b]Q), which saves one application of the map [h]. For large cofactors,
saving such a scalar multiplication can be significant [CEMR24].

The cokernel pairing allows us to generate a basis (P,Q) for E(Fq)/[m]E(Fq), which is
by definition an implicit basis for Sm(E). For example, in Algorithm 4, we may simply
ignore the last multiplication by [h] and return the implicit basis P,Q. Thus, we may
summarize this section as follows.

Corollary 3. Let P,Q ∈ E(Fq). When ⟨P,Q⟩m is a primitive m-th root of unity, the pair
(P,Q) is an implicit basis of Sm(E). The cofactor h ∈ Z>0 maps the implicit basis (P,Q)
to an explicit basis ([h]P, [h]Q) of Sm(E).

7 Future Work
We have introduced the cokernel pairing and explored initial computations, applications,
and connections to the Weil and Tate pairing. This opens up many questions for future
work.

The main question is on an improved computation of the cokernel pairing. Both
Algorithm 2 and Algorithm 3 require knowledge of a basis of E[m] and explicitly computes
one or both of Φm(P ) and Φm(Q). Remarkably, the Tate pairing em(P,Φm(Q)) may
be computed without explicitly computing Φm(Q). We may hope that we can compute
⟨P,Q⟩m similarly, without a direct computation of Φm, or knowledge of the E[m], although
this seems like an extraordinary result. On the other hand, we were unable to show that a
cokernel pairing compuation needs to compute Φm or E[m], and it seems difficult to show
that such a computation is required. In fact, in the peculiar case of maximal supersingular
elliptic curves, we are able to compute the cokernel pairing without knowledge of E[m], but
the computation of Φm in such situations is rather expensive. Future work may explore
the usage of cubical arithmetic [Rob24] for efficient computations of cokernel pairings.

Another direction is in generalizations of the cokernel pairing. We may similarly explore
the cokernel pairing defined on more general abelian varieties, or hope to give a ‘geometric
interpretation’ of the cokernel pairing in terms of cohomology. Another direction for
generalization is inspired by [CHM+23], which explores Tate pairings Tα

f (P,Q) defined
as ef (P, α(R)) for α a suitable endomorphism and f(R) = Q, which coincides with the
f -Tate pairing for α = π − 1. For the cokernel pairing, we could similarly replace the role
of π − 1 either in one argument, or in both arguments, given suitable endomorphisms α, β.

A more concrete direction of research is related to entangled basis generation [ZSP+18],
which results in a basis (P,Q) for E[2f ] on specific supersingular elliptic curves E/Fp2

4Often we only need one of these two: as we need K of order ℓf , either a or b is invertible, and we may
choose P and Q in such a way that we can always express a generator of the same kernel by P + a−1bQ.
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by a rather arbitrary choice of xP and xQ. Understanding why this choice of xP and xQ

ensures ⟨P,Q⟩2 ̸= 1 may help in generalizing entangled basis generation to primes ℓ > 2 or
genus g > 1.
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A Galois Cohomology and the Cokernel Pairing
Silverman [Sil10] gives us an interpretation of the Weil and Tate pairing on abelian varieties
in terms of (Galois) cohomology. A rich treatment of this subject for the Tate pairing is
given by Robert [Rob23]. Here, we repeat the main ingredients from [Sil10] to describe
the Weil and Tate pairing in terms of Galois cohomology, and then sketch approaches
towards a cohomological description of the (unreduced) cokernel pairing.5 We describe
this section for abelian varieties A over a finite field k, as it is more enlightening than the
case of elliptic curves.

A.1 The First Cohomology Groups
The cohomological interpretation of pairings requires some knowledge of the first cohomol-
ogy groups, H0, H1 and H2 for groups M on which Gk = Gal(k/k) acts, so that π(m) is
well-defined for any m ∈M . We explore these cohomology groups for M = k, M = µm,
M = A and M = A[m], where A is an abelian variety over a field k. This is enough for
a cohomological interpretation of the Tate pairing, and for a first approach towards a
cohomological interpretation of the cokernel pairing. For the cokernel pairing, we will
assume k is finite, as this has a significant impact on our deriviation. Hence, in this case,
Gk is generated by π, and a map Gk →M may be defined by the image of π. We will use
multiplicative notation, as we often find ourselves working in µm.

The zero-th group. To start, H0(Gk,M) is easy to understand: it contains the elements
in M fixed by Gk, or in other words, the k-rational elements M(k).

The higher groups. We define the higher groups H1(Gk,M) and H2(Gk,M) as equiva-
lence classes of cocycles and coboundaries. Concretely, a 1-cocycle is a function f : Gk →M
satisfying

f(σ · τ) = σ(f(τ)) · f(σ), for all σ, τ ∈ Gk,

and a 1-coboundary is a function g : Gk →M such that

g(τ) = τ(m)/m, for some m ∈M.

We can then define H1(Gk,M) as the group of 1-cocycles modulo the group of 1-
coboundaries. Similarly, for H2(Gk,M), we define a 2-cocycle as a function f : Gk×Gk →
M satisfying

σ(f(τ, µ)) = f(σ · τ, µ) · f(σ, τ)/f(σ, τ · µ), for all σ, τ, µ ∈ Gk,

and a 2-coboundary is a function g : Gk ×Gk →M satisfying

g(σ, τ) = σ(h(τ)) · h(τ)/h(σ · τ),

for some map h : Gk → M . We can then define H2(Gk,M) as the group of 2-cocycles
modulo the group of 2-coboundaries. The usefulness of these groups comes from the fact
that we may associate a long exact sequence in the groups Hi to a short exact sequence.
For our purposes, we are interested in the short exact sequence

0→ A[m]→ A
[m]−−→ A→ 0,

associated to [m] : A→ A, from which we derive a long exact sequence
5Readers that are only interested in concrete computation and application of the cokernel pairing may

skip this section. Readers interested in more details of the cohomological construction are advised to
explore [Sil10] and then [Rob23].



Krijn Reijnders 21

0 H0(Gk, A[m]) H0(Gk, A) H0(Gk, A)

H1(Gk, A[m]) H1(Gk, A) H1(Gk, A)

H2(Gk, A[m]) H2(Gk, A) H2(Gk, A)

δ

δ

which gives us a connecting homomorphism δ : H0(Gk, A)→ H1(Gk, A[m]). When we
quotient out the image of [m] on H0(Gk, A), and use the identity H0(Gk,M) = M(k),
this gives us a map

A(k)/[m]A(k)→ H1(Gk, A[m]), [P ] 7→ δP

where δP : Gk → A[m] is some 1-cocycle. This map will be fundamental to construct
the Tate pairing, and to study the cokernel pairing from a cohomological point of view.
Furthermore, we need a few key facts, which we can derive from the long exact sequence

1→ µm → k
∗ → k

∗ → 1,

associated to the exponentiation-by-m map k
∗ → k

∗.

Lemma 5. The following holds:

1. H1(Gk, k
∗) = 0,

2. H1(Gk, µm) ∼= k∗/k∗,m,

3. H2(Gk, µm) ∼= H2(Gk, k
∗)[m],

4. When k is finite, H2(Gk, k
∗) = 0.

The first two statements are commonly known as Hilbert’s Theorem 90. The third
statement follows from the first two by the derived long exact sequence. The fourth
statement is related to Brauer groups, but for our purposes, we only need to know that
this group is trivial.

The isomorphism in the second statement can be made more explicit: given a ∈ k∗,
take an m-th root α ∈ k

∗ so that αm = a. This identifies a ∈ k∗ with a 1-cocycle
δa ∈ H1(Gk, µm) defined by δa(σ) = σ(α)

α . Note that for elements a ∈ k∗,m, we find
α ∈ k∗, and so σ(α) = α for all σ ∈ Gk.

A.2 The Tate Pairing
Given the map δ : A(k)/[m]A(k)→ H1(Gk, A[m]) derived from the long exact sequence, we
may apply the Weil pairing with a point Q ∈ Â[m](k) to define a 1-cocycle in H1(Gk, µm)
as follows.

A(k)/[m]A(k)× Â[m](k)→ H1(Gk, µm), (P,Q) 7→ (δP,Q : σ 7→ em(Q, δP (σ))) .

Using the isomorphism H1(Gk, µm) ∼= k∗/k∗,m, we find the unreduced Tate pairing

A(k)/[m]A(k)× Â[m](k)→ k∗/k∗,m.

When we compute this pairing in practice, we may forget this cohomological origin of the
Tate pairing. However, we need to use several of the above concepts to define an unreduced
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cokernel pairing via a similar cohomologic construction. In particular, we should be slightly
more precise about the exact construction above. In strictly cohomological terms, using
A(k) = H0(Gk, A) and Â[m](k) = H0(Gk, Â[m]), we can rewrite the first step as a map

H0(Gk, Â[m])×H0(Gk, A) (1,δ)−−−→ H0(Â[m])×H1(Gk, A[m]).

Now, the second step, applying the Weil pairing, is in fact a map H1(Gk, A[m]⊗ Â[m])→
H1(Gk, µm). Luckily, the required map that connects these steps is a well-known map
called the cup product

∪ : H0(Gk, Â[m])×H1(Gk, A[m])→ H1(Gk, A[m]⊗ Â[m]).

The cup products exists more generally as a map Hi ×Hj → Hi+j , which we apply for
i = 0 and j = 1 here. Altogether, we may compose (1, δ), ∪, and em to get a map

H0(Gk, Â[m])×H0(Gk, A)→ H1(Gk, µm),
(Q,P ) 7→ (δP,Q : σ 7→ em(Q, δP (σ))) .

The unreduced Tate pairing that we use in practice then identifies the former groups
with explicit points on A(k) and Â(k), and the latter group with k∗/k∗,m.

A.3 The Cokernel Pairing
We now sketch some approaches towards a cohomological interpretation of an (unreduced)
cokernel pairing. As before, we get the map δ from the long exact sequence

. . .→ H0(Gk, A) [m]−−→ H0(Gk, A) δ−→ H1(Gk, A[m])→ . . .

and a similar map for the dual as δ̂ : H0(Gk, Â) → H1(Gk, Â[m]). Thus, we may
diagonalize these maps to get

H0(Gk, A)×H0(Gk, Â) (δ,̂δ)−−−−→ H1(Gk, A[m])×H1(Gk, Â[m]). (7)

First try. We might have hoped that, using δ, δ̂, and again em, we may associate to
(P,Q) the 1-cochain gP,Q : Gk → µm defined by

gP,Q : σ 7→ em(δP (σ), δ̂Q(σ)).

However, gP,Q is not a 1-cocycle, as we can readily compute from the required conditions.

Second try. Repeating the logic from before, we may use the cup product ∪ for i = 1
and j = 1 to get a map

H1(Gk, A[m])×H1(Gk, Â[m]) ∪−−→ H2(Gk, A[m]⊗ Â[m]). (8)

Again, this allows us to apply the Weil pairing em : A[m]× Â[m]→ µm to any 2-cocycle
to get

H2(Gk, A[m]⊗ Â[m]) em−−−→ H2(Gk, µm). (9)

With H0(Gk, A) = A(k), the composition of (δ, δ̂), ∪, and em then gives a map

A(k)× Â(k)→ H2(Gk, µm)
(P,Q) 7→ XP,Q.
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and we can explicitly describe XP,Q : Gk ×Gk → µm as the 2-cochain

XP,Q : (σ, τ) 7→ em(δP (σ), σ(δQ(τ))).

Tate [Tat57] shows that for p-adic fields K/Qp, the pairing

H1(GK , A[m])×H1(GK , Â[m])→ H2(GK , µm)

is a non-degenerate pairing,6 and for such fields K, we have H2(GK , µm) ∼−→ Q/Z. However,
in our case, where k is a finite field, Lemma 5 tells us H2(Gk, µm) = 0 and so we find a
most degenerate pairing.

Third try. From intuition, we know that the reduced cokernel pairing ⟨P,Q⟩m should
equal the reduced Tate pairing tℓ(π(R) − R,Q) for [ℓ]R = P , and symmetrically also
tm(π(R′) − R′, P ) for [m]R′ = Q. This inspires us to fix an argument in gP,Q or XP,Q.
Dropping subscripts, we define

Xσ,− : τ 7→ em(δP (σ), σ(δQ(τ))), X−,τ : σ 7→ em(δP (σ), σ(δQ(τ))).

Lemma 6. Xσ,− and X−,τ are 1-cocycles for all σ, τ ∈ Gk.

Proof. We show that Xσ,− satisfies the 1-cocycle condition for any σ and X−,τ follows
naturally. First, recall that δP is a 1-cocycle, e.g., δP (τ · µ) = (τ · µ)(R)−R = τ(µ(R)−
R) + τ(R)−R = τ(δP (µ)) + δP (τ) for any τ, µ ∈ Gk. Using that Gk is abelian, we find

Xσ,−(τ · µ) = em(δP (σ), σ(δQ(τ · µ)))
= em(δP (σ), (σ · τ)(δQ(µ))) · em(δP (σ), σ(δQ(τ)))
= τ(Xσ,−(µ)) ·Xσ,−(τ)

where the last line uses τ(δP (σ)) = δP (σ) as δP (σ) is now a fixed point in A[m] ⊆ A(Fq).

We get a map to H1(Gk, H
1(Gk, µm)) given a pair of points (P,Q), by

A(k)× Â(k)→ H1(Gk, H
1(Gk, µm))

(P,Q) 7→ ( X : σ 7→ Xσ,− ),

where Xσ,− : τ 7→ em( δP (σ), σδQ(τ) ) ∈ H1(Gk, µm), and symmetrically another map
using X−,τ . In the case that we are interested in, e.g., k is finite and A[m] ⊆ A(k), this
definition seems to coincide with the unreduced pairing values we may expect to obtain
using the interpretation as an unreduced Tate pairing with respect to Φm(P ), resp. Φm(Q).
Nevertheless, the approach feels somewhat unnatural and teleological.

6A specific example of local Tate duality.


	Introduction
	Preliminaries
	Pairings
	The Weil Pairing
	The Tate Pairing
	The Sylow -Torsion
	The Tate Profile

	The Cokernel Pairing
	The Cokernel Pairing
	Connection to the Sylow -torsion
	The Generalized Cokernel Pairing

	Computation of the Cokernel Pairing
	Using Weil and Tate pairings
	Using only Tate pairings
	Two concrete examples of cokernel pairings

	Connections to the Weil and Tate Pairing
	Applications of the Cokernel Pairing
	Computing a Sylow torsion basis
	Constructing a kernel point of an f-isogeny

	Future Work
	References
	Galois Cohomology and the Cokernel Pairing
	The First Cohomology Groups
	The Tate Pairing
	The Cokernel Pairing


